Dynamics of Kdv Solitons in the Presence of a Slowly Varying Potential

نویسنده

  • JUSTIN HOLMER
چکیده

We study the dynamics of solitons as solutions to the perturbed KdV (pKdV) equation ∂tu = −∂x(∂ xu + 3u − bu), where b(x, t) = b0(hx, ht), h 1 is a slowly varying, but not small, potential. We obtain an explicit description of the trajectory of the soliton parameters of scale and position on the dynamically relevant time scale δh−1 log h−1, together with an estimate on the error of size h. In addition to the Lyapunov analysis commonly applied to these problems, we use a local virial estimate due to Martel-Merle [15]. The results are supported by numerics. The proof does not rely on the inverse scattering machinery and is expected to carry through for the L subcritical gKdV-p equation, 1 < p < 5. The case of p = 3, the modified Korteweg-de Vries (mKdV) equation, is structurally simpler and more precise results can be obtained by the method of Holmer-Zworski [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر الکترون‎های ابرگرم بر انتشار سالیتون‎های یون صوت با دامنه دلخواه در پلاسمای با یون منفی

  Investigation of ion acoustic solitons in three component plasma including positive and negative ions and Maxwellian electrons shows that negative to positive relative ion density plays a critical role so that by changing ν over the range of 0<ν<1 compressive or rarefactive solitons will propagate. In this paper, it is shown that due to the superthermal electrons, there are three domains for ...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

Numerical realizations of solutions of the stochastic KdV equation

We investigate simulations of exact solutions of the stochastic Dr. Herman Numerical Realizations of Solutions f the Stochastic KdV Equation Exact Solution of Stochastic KdV Wadati 1983 The One Soliton Solution Under Noise Statistical Averages The Exact Solution for < u(x, t) > via the Diffusion Equation Solving the Diffusion Equation The Damped Stochastic KdV Asymptotics Numerical Simulation o...

متن کامل

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

سالیتون‌های متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفه‌ای

The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and  positrons, classical cold ions and stationary negative dust grains are studied by deriving  the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010